

2 in 1 Handheld Oscilloscope & Multimeter

OHUI2100 Series

- 2 channel oscilloscope. 200/100/60 MHz bandwidth, 1 GSa/s Sample Rate.
- Functions FFT, +, -, *, /.
- 1 M memory depth, high refresh rate (2500 frames).
- 6000 count high precision DMM with an analog barograph.
- 5.6" TFT color LCD display.
- Pass / fail function compares a stored waveform to an unknown input.
- USB host / device; 2.0 full-speed interface, supports removable disks; LAN optional.

Oscilloscopes

www.orca-sys.com

ample Modes Jormal Jeak Detect Werage Inputs Coupling Inputs Impedance Probe Attenuation Imported Probe Attenuation Factor Maximum Input Voltage Advisor Interpolation Record Length EEC/DIV Range Comple Rate and Delay Time Accuracy Prosition Range Delta Time Measurement Accuracy (Full Bandwidth) //ertical Resolution Prosition Range	Real-time sample: 1 GS/s; equNormal data onlyHigh-frequency and random gWaveform average, selectableAC, DC, GND1 mΩ±2% 20 pF±3 pF1x, 10x1x, 10x, 100x, 1000xCAT I and CAT II: 300 VRMS (1nInstallation category II: derateMHz and above. For non-sinusExcursion above 300 V shouldincluding all DC components riIn order to prevent damage to500 MS/s ~1 GS/s(sin x)/x1 M2 ns/div ~ 2000 s/div,500ps (at over any ≥1 ms tim2 ns/div to10 ns/div;(-4div×s/div) to 20 msSingle-shot, normal mode: ± (1>16 averages: ± (1 sample interval = s/div ÷ 2008-bit resolution, all channel sa2 mV/div to 200 mV/div, ±2 V	litch capture 4, 8, 16, 32, 64, 128 0×), Installation category; CA at 20 dB/decade above 100 oidal waveforms, peak value be of less than 100 ms durat emoved through AC coupling the instrument, these value 4 ns/div ~ 2000 s/div, e interval) 4 ns/div to 8 ns/div; (-8di 20 ns/div to 80 µs /div; (- 200 µs/div to 40 s/div; (- t sample interval +100 ppm × reading + 0	kHz to 13 V peak AC at 3 e must be less than 450 V. tion. RMS signal level g must be limited to 300 V. es shall not be exceeded. iv x s/div) to 40 ms; 8div×s/div) to 40 ms; 8div×s/div) to 40 ms; 8div×s/div) to 400 s; × reading + 0.6 ns);		
Peak Detect Verage Inputs Coupling Inputs Impedance Probe Attenuation Imported Probe Attenuation Impor	High-frequency and random gWaveform average, selectableAC, DC, GND1 mΩ±2% 20 pF±3 pF1x, 10x1x, 10x, 100x, 1000xCAT I and CAT II: 300 VRMS (11Installation category II: derateMHz and above. For non-sinusExcursion above 300 V shouldincluding all DC components roIn order to prevent damage to500 MS/s ~1 GS/s(sin x)/x1 M2 ns/div ~ 2000 s/div,500ps (at over any ≥1 ms tim2 ns/div to10 ns/div;(-4div×s/div) to 20 msSingle-shot, normal mode: ± (1>16 averages: ± (1 sample intersample interval = s/div ÷ 2008-bit resolution, all channel sa	 4, 8, 16, 32, 64, 128 0×), Installation category; CA at 20 dB/decade above 100 coidal waveforms, peak value be of less than 100 ms duraternoved through AC coupling the instrument, these value 4 ns/div ~ 2000 s/div, e interval) 4 ns/div to 8 ns/div; (-8di 20 ns/div to 80 µs /div; (-200 µs/div to 40 s/div; (-100 µs/div; (-100	kHz to 13 V peak AC at 3 e must be less than 450 V. tion. RMS signal level g must be limited to 300 V. es shall not be exceeded. iv x s/div) to 40 ms; 8div×s/div) to 40 ms; 8div×s/div) to 40 ms; 8div×s/div) to 400 s; × reading + 0.6 ns);		
Average nputs Coupling nputs Impedance Probe Attenuation Supported Probe Attenuation Sactor Maximum Input Voltage Maximum Input Voltage Naveform Interpolation Record Length EC/DIV Range Sample Rate and Delay Time Accuracy Position Range Delta Time Measurement Accuracy (Full Bandwidth) /ertical Resolution	Waveform average, selectable AC, DC, GND 1 mΩ±2% 20 pF±3 pF 1x, 10x 1x, 10x, 100x, 1000x CAT I and CAT II: 300 VRMS (11 Installation category II: derate MHz and above. For non-sinus Excursion above 300 V should including all DC components ro In order to prevent damage to 500 MS/s ~1 GS/s (sin x)/x 1 M 2 ns/div ~ 2000 s/div, 500ps (at over any ≥1 ms tim 2 ns/div to10 ns/div; (-4div×s/div) to 20 ms Single-shot, normal mode: ± (2 >16 averages: ± (1 sample inte Sample interval = s/div ÷ 200 8-bit resolution, all channel sa	 4, 8, 16, 32, 64, 128 0×), Installation category; CA at 20 dB/decade above 100 coidal waveforms, peak value be of less than 100 ms duraternoved through AC coupling the instrument, these value 4 ns/div ~ 2000 s/div, e interval) 4 ns/div to 8 ns/div; (-8di 20 ns/div to 80 µs /div; (-200 µs/div to 40 s/div; (-100 µs/div; (-100	kHz to 13 V peak AC at 3 e must be less than 450 V. tion. RMS signal level g must be limited to 300 V. es shall not be exceeded. iv x s/div) to 40 ms; 8div×s/div) to 40 ms; 8div×s/div) to 40 ms; 8div×s/div) to 400 s; × reading + 0.6 ns);		
nputs Coupling nputs Impedance Probe Attenuation Supported Probe Attenuation Factor Maximum Input Voltage Maximum Input Voltage Vaveform Interpolation Record Length EC/DIV Range Sample Rate and Delay Time Accuracy Position Range Delta Time Measurement Accuracy (Full Bandwidth) /ertical Resolution	AC, DC, GND1 mΩ±2% 20 pF±3 pF1x, 10x1x, 10x, 100x, 1000xCAT I and CAT II: 300 VRMS (11Installation category II: derateMHz and above. For non-sinusExcursion above 300 V shouldincluding all DC components roIn order to prevent damage to500 MS/s ~1 GS/s(sin x)/x1 M2 ns/div ~ 2000 s/div,500ps (at over any ≥1 ms tim2 ns/div to10 ns/div;(-4div×s/div) to 20 msSingle-shot, normal mode: ± (1>16 averages: ± (1 sample inteSample interval = s/div ÷ 2008-bit resolution, all channel sa	0×), Installation category; CA at 20 dB/decade above 100 ioidal waveforms, peak value be of less than 100 ms durat emoved through AC coupling the instrument, these value 4 ns/div ~ 2000 s/div, e interval) 4 ns/div to 8 ns/div; (-8di 20 ns/div to 80 µs /div; (- 200 µs/div to 40 s/div; (- 1 sample interval +100 ppm × erval + 100 ppm × reading + 0	kHz to 13 V peak AC at 3 e must be less than 450 V. tion. RMS signal level g must be limited to 300 V. es shall not be exceeded. iv x s/div) to 40 ms; 8div×s/div) to 40 ms; 8div×s/div) to 40 ms; 8div×s/div) to 400 s; × reading + 0.6 ns);		
Anputs Impedance Probe Attenuation Aupported Probe Attenuation actor Maximum Input Voltage Maximum Input Voltage Naveform Interpolation Record Length EC/DIV Range Mample Rate and Delay Time Accuracy Position Range Delta Time Measurement Accuracy (Full Bandwidth) /ertical Resolution	AC, DC, GND1 mΩ±2% 20 pF±3 pF1x, 10x1x, 10x, 100x, 1000xCAT I and CAT II: 300 VRMS (11Installation category II: derateMHz and above. For non-sinusExcursion above 300 V shouldincluding all DC components roIn order to prevent damage to500 MS/s ~1 GS/s(sin x)/x1 M2 ns/div ~ 2000 s/div,500ps (at over any ≥1 ms tim2 ns/div to10 ns/div;(-4div×s/div) to 20 msSingle-shot, normal mode: ± (1>16 averages: ± (1 sample inteSample interval = s/div ÷ 2008-bit resolution, all channel sa	0×), Installation category; CA at 20 dB/decade above 100 ioidal waveforms, peak value be of less than 100 ms durat emoved through AC coupling the instrument, these value 4 ns/div ~ 2000 s/div, e interval) 4 ns/div to 8 ns/div; (-8di 20 ns/div to 80 µs /div; (- 200 µs/div to 40 s/div; (- 1 sample interval +100 ppm × erval + 100 ppm × reading + 0	kHz to 13 V peak AC at 3 e must be less than 450 V. tion. RMS signal level g must be limited to 300 V. es shall not be exceeded. iv x s/div) to 40 ms; 8div×s/div) to 40 ms; 8div×s/div) to 40 ms; 8div×s/div) to 400 s; × reading + 0.6 ns);		
Probe Attenuation Supported Probe Attenuation Sactor Maximum Input Voltage Maximum Input Voltage Vaveform Interpolation Record Length IEC/DIV Range Sample Rate and Delay Time Accuracy Position Range Delta Time Measurement Accuracy (Full Bandwidth) /ertical Resolution	1x, 10x 1x, 10x, 100x, 1000x 1x, 10x, 100x, 1000x CAT I and CAT II: 300 VRMS (11) Installation category II: derate MHz and above. For non-sinus Excursion above 300 V should including all DC components ro In order to prevent damage to 500 MS/s ~1 GS/s (sin x)/x 1 M 2 ns/div ~ 2000 s/div, 500ps (at over any ≥1 ms tim 2 ns/div to10 ns/div; (-4div×s/div) to 20 ms Single-shot, normal mode: ± (1 sample interval = s/div ÷ 200 8-bit resolution, all channel sa	at 20 dB/decade above 100 coidal waveforms, peak value be of less than 100 ms durat emoved through AC coupling the instrument, these value 4 ns/div ~ 2000 s/div, e interval) 4 ns/div to 8 ns/div; (-8di 20 ns/div to 80 µs /div; (- 200 µs/div to 40 s/div; (- 1 sample interval +100 ppm × erval + 100 ppm × reading + 0	kHz to 13 V peak AC at 3 e must be less than 450 V. tion. RMS signal level g must be limited to 300 V. es shall not be exceeded. iv x s/div) to 40 ms; 8div×s/div) to 40 ms; 8div×s/div) to 40 ms; 8div×s/div) to 400 s; × reading + 0.6 ns);		
Aupported Probe Attenuation factor Aaximum Input Voltage Aample Rate Range Vaveform Interpolation Record Length IEC/DIV Range fample Rate and Delay Time Accuracy Position Range Delta Time Measurement Accuracy (Full Bandwidth) /ertical Resolution	 1x, 10x, 100x, 1000x CAT I and CAT II: 300 VRMS (11 Installation category II: derate MHz and above. For non-sinus Excursion above 300 V should including all DC components ro In order to prevent damage to 500 MS/s ~1 GS/s (sin x)/x 1 M 2 ns/div ~ 2000 s/div, 500ps (at over any ≥1 ms tim 2 ns/div to10 ns/div; (-4div×s/div) to 20 ms Single-shot, normal mode: ± (1 >16 averages: ± (1 sample inte Sample interval = s/div ÷ 200 8-bit resolution, all channel sa 	at 20 dB/decade above 100 coidal waveforms, peak value be of less than 100 ms durat emoved through AC coupling the instrument, these value 4 ns/div ~ 2000 s/div, e interval) 4 ns/div to 8 ns/div; (-8di 20 ns/div to 80 µs /div; (- 200 µs/div to 40 s/div; (- 1 sample interval +100 ppm × erval + 100 ppm × reading + 0	kHz to 13 V peak AC at 3 e must be less than 450 V. tion. RMS signal level g must be limited to 300 V. es shall not be exceeded. iv x s/div) to 40 ms; 8div×s/div) to 40 ms; 8div×s/div) to 40 ms; 8div×s/div) to 400 s; × reading + 0.6 ns);		
Aaximum Input Voltage Aaximum Input Voltage Vaveform Interpolation Record Length IEC/DIV Range Aample Rate and Delay Time Accuracy Position Range Delta Time Measurement Accuracy (Full Bandwidth) /ertical Resolution	CAT I and CAT II: 300 VRMS (1) Installation category II: derate MHz and above. For non-sinus Excursion above 300 V should including all DC components ru In order to prevent damage to 500 MS/s ~1 GS/s (sin x)/x 1 M 2 ns/div ~ 2000 s/div, 500ps (at over any ≥1 ms tim 2 ns/div to10 ns/div; (-4div×s/div) to 20 ms Single-shot, normal mode: ± (1 >16 averages: ± (1 sample inte Sample interval = s/div ÷ 200 8-bit resolution, all channel sa	at 20 dB/decade above 100 coidal waveforms, peak value be of less than 100 ms durat emoved through AC coupling the instrument, these value 4 ns/div ~ 2000 s/div, e interval) 4 ns/div to 8 ns/div; (-8di 20 ns/div to 80 µs /div; (- 200 µs/div to 40 s/div; (- 1 sample interval +100 ppm × erval + 100 ppm × reading + 0	kHz to 13 V peak AC at 3 e must be less than 450 V. tion. RMS signal level g must be limited to 300 V. es shall not be exceeded. iv x s/div) to 40 ms; 8div×s/div) to 40 ms; 8div×s/div) to 40 ms; 8div×s/div) to 400 s; × reading + 0.6 ns);		
Maximum Input Voltage Maximum Input Voltage Vaveform Interpolation Record Length EC/DIV Range Mample Rate and Delay Time Accuracy Position Range Delta Time Measurement Accuracy (Full Bandwidth) /ertical Resolution	CAT I and CAT II: 300 VRMS (1) Installation category II: derate MHz and above. For non-sinus Excursion above 300 V should including all DC components ru In order to prevent damage to 500 MS/s ~1 GS/s (sin x)/x 1 M 2 ns/div ~ 2000 s/div, 500ps (at over any ≥1 ms tim 2 ns/div to10 ns/div; (-4div×s/div) to 20 ms Single-shot, normal mode: ± (1 >16 averages: ± (1 sample inte Sample interval = s/div ÷ 200 8-bit resolution, all channel sa	at 20 dB/decade above 100 coidal waveforms, peak value be of less than 100 ms durat emoved through AC coupling the instrument, these value 4 ns/div ~ 2000 s/div, e interval) 4 ns/div to 8 ns/div; (-8di 20 ns/div to 80 µs /div; (- 200 µs/div to 40 s/div; (- 1 sample interval +100 ppm × erval + 100 ppm × reading + 0	kHz to 13 V peak AC at 3 e must be less than 450 V. tion. RMS signal level g must be limited to 300 V. es shall not be exceeded. iv x s/div) to 40 ms; 8div×s/div) to 40 ms; 8div×s/div) to 40 ms; 8div×s/div) to 400 s; × reading + 0.6 ns);		
ample Rate Range Vaveform Interpolation Record Length IEC/DIV Range ample Rate and Delay Time Accuracy Position Range Delta Time Measurement Accuracy (Full Bandwidth) /ertical Resolution	Installation category II: derate MHz and above. For non-sinus Excursion above 300 V should including all DC components re In order to prevent damage to 500 MS/s ~1 GS/s (sin x)/x 1 M 2 ns/div ~ 2000 s/div, 500ps (at over any ≥1 ms tim 2 ns/div to10 ns/div; (-4div×s/div) to 20 ms Single-shot, normal mode: ± (2 >16 averages: ± (1 sample inte Sample interval = s/div ÷ 200 8-bit resolution, all channel sa	at 20 dB/decade above 100 coidal waveforms, peak value be of less than 100 ms durat emoved through AC coupling the instrument, these value 4 ns/div ~ 2000 s/div, e interval) 4 ns/div to 8 ns/div; (-8di 20 ns/div to 80 µs /div; (- 200 µs/div to 40 s/div; (- 1 sample interval +100 ppm × erval + 100 ppm × reading + 0	kHz to 13 V peak AC at 3 e must be less than 450 V. tion. RMS signal level g must be limited to 300 V. es shall not be exceeded. iv x s/div) to 40 ms; 8div×s/div) to 40 ms; 8div×s/div) to 40 ms; 8div×s/div) to 400 s; × reading + 0.6 ns);		
Vaveform Interpolation Record Length IEC/DIV Range ample Rate and Delay Time Accuracy Position Range Delta Time Measurement Accuracy (Full Bandwidth) /ertical Resolution	$(\sin x)/x$ 1 M 2 ns/div ~ 2000 s/div, 500ps (at over any ≥1 ms tim 2 ns/div to10 ns/div; (-4div×s/div) to 20 ms Single-shot, normal mode: ± (2 >16 averages: ± (1 sample inter Sample interval = s/div ÷ 200 8-bit resolution, all channel sa	e interval) 4 ns/div to 8 ns/div; (-8di 20 ns/div to 80 μs /div; (- 200 μs/div to 40 s/div; (- L sample interval +100 ppm × rval + 100 ppm × reading + 0	8div×s/div) to 40 ms; 8div×s/div) to 400 s; × reading + 0.6 ns);		
Record Length IEC/DIV Range ample Rate and Delay Time Accuracy Position Range Delta Time Measurement Accuracy (Full Bandwidth) /ertical Resolution	1 M 2 ns/div ~ 2000 s/div, 500ps (at over any ≥1 ms tim 2 ns/div to10 ns/div; (-4div×s/div) to 20 ms Single-shot, normal mode: ± (1 >16 averages: ± (1 sample inter Sample interval = s/div ÷ 200 8-bit resolution, all channel sa	e interval) 4 ns/div to 8 ns/div; (-8di 20 ns/div to 80 μs /div; (- 200 μs/div to 40 s/div; (- L sample interval +100 ppm × rval + 100 ppm × reading + 0	8div×s/div) to 40 ms; 8div×s/div) to 400 s; × reading + 0.6 ns);		
EC/DIV Range ample Rate and Delay Time Accuracy Position Range Delta Time Measurement Accuracy (Full Bandwidth) /ertical Resolution	2 ns/div ~ 2000 s/div, 500ps (at over any ≥1 ms tim 2 ns/div to10 ns/div; (-4div×s/div) to 20 ms Single-shot, normal mode: ± (1 >16 averages: ± (1 sample inter Sample interval = s/div ÷ 200 8-bit resolution, all channel sa	e interval) 4 ns/div to 8 ns/div; (-8di 20 ns/div to 80 μs /div; (- 200 μs/div to 40 s/div; (- L sample interval +100 ppm × rval + 100 ppm × reading + 0	8div×s/div) to 40 ms; 8div×s/div) to 400 s; × reading + 0.6 ns);		
ample Rate and Delay Time Accuracy Position Range Delta Time Measurement Accuracy (Full Bandwidth) /ertical Resolution	500ps (at over any ≥1 ms tim 2 ns/div to10 ns/div; (-4div×s/div) to 20 ms Single-shot, normal mode: ± (2 >16 averages: ± (1 sample inte Sample interval = s/div ÷ 200 8-bit resolution, all channel sa	e interval) 4 ns/div to 8 ns/div; (-8di 20 ns/div to 80 μs /div; (- 200 μs/div to 40 s/div; (- L sample interval +100 ppm × rval + 100 ppm × reading + 0	8div×s/div) to 40 ms; 8div×s/div) to 400 s; × reading + 0.6 ns);		
Accuracy Position Range Delta Time Measurement Accuracy (Full Bandwidth) /ertical Resolution	2 ns/div to10 ns/div; (-4div×s/div) to 20 ms Single-shot, normal mode: ± (>16 averages: ± (1 sample inte Sample interval = s/div ÷ 200 8-bit resolution, all channel sa	4 ns/div to 8 ns/div; (-8di 20 ns/div to 80 μs /div; (- 200 μs/div to 40 s/div; (- L sample interval +100 ppm × rval + 100 ppm × reading + 0	8div×s/div) to 40 ms; 8div×s/div) to 400 s; × reading + 0.6 ns);		
Position Range Delta Time Measurement Accuracy (Full Bandwidth) /ertical Resolution	2 ns/div to10 ns/div; (-4div×s/div) to 20 ms Single-shot, normal mode: ± (>16 averages: ± (1 sample inte Sample interval = s/div ÷ 200 8-bit resolution, all channel sa	4 ns/div to 8 ns/div; (-8di 20 ns/div to 80 μs /div; (- 200 μs/div to 40 s/div; (- L sample interval +100 ppm × rval + 100 ppm × reading + 0	8div×s/div) to 40 ms; 8div×s/div) to 400 s; × reading + 0.6 ns);		
Delta Time Measurement Accuracy (Full Bandwidth) /ertical Resolution	(-4div×s/div) to 20 ms Single-shot, normal mode: ± (2 >16 averages: ± (1 sample inte Sample interval = s/div ÷ 200 8-bit resolution, all channel sa	20 ns/div to 80 μs /div; (- 200 μs/div to 40 s/div; (- I sample interval +100 ppm × rval + 100 ppm × reading + 0	8div×s/div) to 40 ms; 8div×s/div) to 400 s; × reading + 0.6 ns);		
Accuracy (Full Bandwidth) /ertical Resolution	>16 averages: ± (1 sample inte Sample interval = s/div ÷ 200 8-bit resolution, all channel sa	rval + 100 ppm × reading + 0	e ,.		
(Full Bandwidth) /ertical Resolution	Sample interval = s/div ÷ 200 8-bit resolution, all channel sa).4 ns);		
/ertical Resolution	8-bit resolution, all channel sa	mpled simultaneously			
		mpled simultaneously			
Position Range	2 mV/div to 200 mV/div, ±2 V		8-bit resolution, all channel sampled simultaneously		
Ushtion hange		2 mV/div to 200 mV/div, ±2 V			
	200 mV/div to 5 V/div, ±50 V				
Bandwidth	200 MHz	100 MHz	60 MHz		
Rise Time at BNC (Typical)	1.8 ns	3.5 ns	5.8 ns		
nalog Bandwidth in Normal Ind Average Modes at BNC or vith Probe, DC Coupled	2 mV/div to 20 mV/div, ±400 mV; 50 mV/div to 200 mV/div, ±2 V; 500 mV/div to 2 V/div, ±40 V; 5 V/div, ±50 V +, -, *, /, FFT				
Лаth					
FT	Windows: Hanning, flat top, rectangular, Bartlett, Blackman; 1024 sample points				
Bandwidth Limit	20 MHz				
ow Frequency Response	≤10 Hz at BNC				
DC Gain Accuracy	±3% for normal or average acquisition mode, 5 V/div to 10 mV/div;				
DC Measurement Accuracy, werage Acquisition Mode	10 mV/div or greater is selected; When vertical displacement is not zero, and N≥16: ± [3% × (reading + vertical position) + 1% of vertical position + 0.2div]; Add 2 mV for settings from 2 mV/div to				
/olts Measurement Repeatability, Average Acquisition Mode	Delta volts between any two averages of ≥16 waveforms acquired under same setup and ambient conditions				
rigger Types	Edge, video, pulse, slope, over	time, alternative			
rigger Source	CH1, CH2, AC line				
rigger Modes	Auto, normal				
Coupling Type	DC, AC, Noise Reject, HF Reject	t, LF Reject			
rigger Sensitivity	DC (CH1, CH2): 1 div from DC to 10 MHz; 1.5 div from 10 MHz to 100 MHz; 2 div from 100 MHz to Full; AC: Attenuates signals below 10 Hz; HF Reject: Attenuates signals above 80 kHz; LF Reject: Same as the DC-coupled limits for frequencies above 150 kHz; attenuates				
	ow Frequency Response 3db) C Gain Accuracy C Measurement Accuracy, verage Acquisition Mode olts Measurement epeatability, verage Acquisition Mode rigger Types rigger Source rigger Modes oupling Type	ww Frequency Response 3db) ≤10 Hz at BNC C Gain Accuracy ±3% for normal or average acc ±4% for normal or average acc C Measurement Accuracy, verage Acquisition Mode When vertical displacement is 10 mV/div or greater is selected When vertical displacement is position) + 1% of vertical posit 200 mV/div; add 50 mV for sel olts Measurement epeatability, verage Acquisition Mode Delta volts between any two a and ambient conditions rigger Types Edge, video, pulse, slope, over crigger Modes Auto, normal DC, AC, Noise Reject, HF Reject DC (CH1, CH2): 1 div from DC 1 from 100 MHz to Full; AC: Attenuates signals below 2	Sow Frequency Response ≤10 Hz at BNC Sob ±3% for normal or average acquisition mode, 5 V/div to 10 ±4% for normal or average acquisition mode, 5 mV/div to 10 ±4% for normal or average acquisition mode, 5 mV/div to 10 ±4% for normal or average acquisition mode, 5 mV/div to 10 ±4% for normal or average acquisition mode, 5 mV/div to 10 ±4% for normal or average acquisition mode, 5 mV/div to 10 ±4% for normal or average acquisition mode, 5 mV/div to 10 When vertical displacement is zero, and N≥16: ± (3% × reation mode) 10 mV/div or greater is selected; When vertical displacement is not zero, and N≥16: ± [3% × position) + 1% of vertical position + 0.2div]; Add 2 mV for sections 200 mV/div; add 50 mV for settings from 200 mV/div to 5 mV/div to 5 mV polta volts between any two averages of ≥16 waveforms a and ambient conditions rigger Types Edge, video, pulse, slope, over time, alternative rigger Modes Auto, normal poupling Type DC, AC, Noise Reject, HF Reject, LF Reject DC (CH1, CH2): 1 div from DC to 10 MHz; 1.5 div from 10 N from 100 MHz to Full; AC: Attenuates signals below 10 Hz; HF Reject: Attenuates signals above 80 kHz; HF Reject: Attenuates signals above 80 kHz;		

Oscilloscopes

	Trigger Level Range	CH1/CH2: ±8 divisions from center of screen;	
	Trigger Level Accuracy (typical) Accuracy Is for Signals Having Rise and Fall	CH1/CH2: 0.2 div × volts/div within ±4 divisions from center of screen Operates with input signals ≥50 Hz	
	Times ≥20 ns Set Level to 50% (typical)		
	Video Trigger Type	CH1, CH2: Peak-to-peak amplitude of 2 divisions;	
	Signal Formats and Field		
Video Trigger	Rates, Video Trigger Type	Supports NTSC, PAL and SECAM broadcast systems for any field or any line	
	Holdoff Range	100 ns ~ 10 s	
	Pulse Width Trigger Mode		
		Trigger when (<, >, =, or \neq); positive pulse or negative pulse	
Pulse Width Trigger	Pulse Width Trigger Point	Equal: The oscilloscope triggers when the trailing edge of the pulse crosses the trigger level. Not equal: If the pulse is narrower than the specified width, the trigger point is the trailing edge. Otherwise, the oscilloscope triggers when a pulse continues longer than the time specified as the pulse width. Less than: The trigger point is the trailing edge. Greater than (also called overtime trigger): The oscilloscope triggers when a pulse continues longer than the time specified as the Pulse Width	
	Pulse Width Range	20 ns ~ 10 s	
	Slope Trigger Mode	Trigger when (<, >, =, or ≠); positive slope or negative slope	
Slope Trigger	Slope Trigger Point	Equal: The oscilloscope triggers when the waveform slope is equal to the set slope. Not equal: The oscilloscope triggers when the waveform slope is not equal to the set slope. Less than: The oscilloscope triggers when the waveform slope is less than the set slope. Greater than: The oscilloscope triggers when the waveform slope is greater than the set slope	
	Time Range	20 ns ~ 10 s	
Overtime Trigger	Over Time Mode	Rising edge or falling edge	
Overtime mgger	Time Range	20 ns ~ 10 s	
Alternative Trigger	Trigger on CH1	Internal trigger: edge, pulse width, video, slope	
Alternative mgger	Trigger on CH2	Internal trigger: edge, pulse width, video, slope	
	Readout Resolution	6 digits	
	Accuracy (typical)	±30 ppm (including all frequency reference errors and ±1 count errors)	
	Frequency Range	AC coupled, from 4 Hz minimum to rated bandwidth	
Trigger Frequency Counter	Signal Source	 Pulse width or edge trigger modes: all available trigger sources The Frequency counter measures trigger source at all times, including when the oscilloscope acquisition pauses due to changes in the run status, or acquisition of a single shot event has completed. Pulse width trigger mode: The oscilloscope counts pulses of significant magnitude inside the 1 s measurement window that qualify as triggerable events, such as narrow pulses in a PWM pulse train if set to < mode and the width is set to a relatively small time. Edge trigger mode: The oscilloscope counts all edges of sufficient magnitude and correct polarity. Video trigger mode: The frequency counter does not work. 	
Display	Display Resolution	640 x 480 pixels	
	Display Contrast	Adjustable (16 gears) with the progress bar	
Probe Compensator Output	Output Voltage (Typical)	About 5 Vpp into $\geq 1 m\Omega$ load	
output	Frequency (Typical)	1 kHz	
	Supply Voltage	AC Input: 100-240 VACRMS, 0.6 A MAX, 50 Hz ~ 60 Hz	
		DC Output: 9 V, 2 A <30 W	
Power Supply	11,7 0		
Power Supply	Power Consumption		
Power Supply	11,7 0	Operating: 32 °F to 122 °F (0 °C to 50 °C);	
Power Supply	Power Consumption Temperature	Operating: 32 °F to 122 °F (0 °C to 50 °C); Nonoperating: -40 °F to 159.8 °F (-40 °C to +71 °C)	
	Power Consumption	Operating: 32 °F to 122 °F (0 °C to 50 °C); Nonoperating: -40 °F to 159.8 °F (-40 °C to +71 °C) Convection	
Power Supply Environmental	Power Consumption Temperature	Operating: 32 °F to 122 °F (0 °C to 50 °C); Nonoperating: -40 °F to 159.8 °F (-40 °C to +71 °C)	
	Power Consumption Temperature Cooling Method	Operating: 32 °F to 122 °F (0 °C to 50 °C); Nonoperating: -40 °F to 159.8 °F (-40 °C to +71 °C)Convection+104 °F or below (+40 °C or below): \leq 90% relative humidity; 106 °F to 122 °F (+41 °C to 50 °C): \leq 60% relative humidityOperating: < 3,000 m (10,000 ft);	
	Power Consumption Temperature Cooling Method Humidity	Operating: 32 °F to 122 °F (0 °C to 50 °C);Nonoperating: -40 °F to 159.8 °F (-40 °C to +71 °C)Convection+104 °F or below (+40 °C or below): \leq 90% relative humidity;106 °F to 122 °F (+41 °C to 50 °C): \leq 60% relative humidity	

	Max. Resolution	6000 counts	
	DMM Testing Modes	Voltage, current, resistance, capacitance, diode & continuity AC: 600 V, DC: 800 V AC: 10 A, DC: 10 A 10 mΩ 1.2 M Point	
5	Max. Input Voltage		
DMM Mode	Max. Input Current		
	Input Impedance		
	DMM Trend Plot		
Range	Resolution	Accuracy	Resolution
	60.00 mV	±1%±3 digit	10 uV
	600.0 mV		100 uV
	6.000 V		1 mV
DC Voltage	60.00 V		10 mV
	600.0 V		100 mV
	800 V		1 V
	60.00 mV		10 uV
	600.0 mV	±1%±3 digit	100 uV
AC Voltage	6.000 V		1 mV
	60.00 V		10 mV
	600.0 V		100 mV
	60.00 mA	±1%±5 digit	10 uA
	600.0 mA	±1.5%±5 digit	100 uA
DC Current	6.000 A		1 mA
	10.00 A		10 mA
	60.00 mA	±1%±5 digit	10 uA
	600.0 mA	±1.5%±5 digit	100 uA
AC Current	6.000 A		1 mA
	10.00 A		10 mA
	600 Ω	±1%±3 digit	0.1 Ω
	6.000 ΚΩ		1Ω
	60.00 ΚΩ		10 Ω
Resistance	600.0 ΚΩ		1 ΚΩ
	6.000 mΩ		10 ΚΩ
	60.00 mΩ	±1%±5 digit	100 ΚΩ
	40.00 nF		10 pF
	400.0 nF	_	100 pF
	4.000 uF	±2%±5 digit	1 nF
Capacitance	40.00 uF		10 nF
	400.0 uF		100 nF
	Attention: the smallest cap	acitance value that can be measured in 5	nF.
Diode	0 V ~ 2.0 V		
On-Off Test	<10 Ω		

Options:

OHUI2100-A6

Oscilloscopes